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The redistribution of impurities in a sample in the shape of a slab filled with an isotropic
liquid submitted to an external field is considered. The case in which the impurities are ions
dissolved in the liquid, and the external field is an electric field is also investigated. It is shown
that the intrinsic time connected with the presence of the electric field is proportional to the
drift time. The constant of proportionality is of the order of the ratio between the thermal
agitation energy and the electrostatic energy. A closed solution for the time evolution of the
density of particles is obtained. The importance of the effect on real situations is investigated.
The possible application of these results to nematic samples submitted to an external electric
field is discussed.

1. Introduction
The presence of impurities dissolved in a liquid can

strongly modify the physical properties of the liquid

itself. An open fundamental question is the analysis of

the drift-diffusion problem of the impurities in a sample

of liquid. In this framework, it is important to have

information on the relaxation of the density of

impurities when an external field is present, by taking

into account the diffusion phenomenon [1].

The aim of this work is to consider the distribution

of impurities in a sample in the shape of a slab filled

with an isotropic liquid submitted to an external field,

by considering in particular the case in which the

impurities are ions dissolved in the liquid. We will show

that the intrinsic time connected with the presence of

the electric field is proportional to the drift time, but it

strongly depends on the temperature. Our results can

be directly applied to nematic liquid crystal samples

uniformly oriented, in a planar or homeotropic manner,

when the electric field is smaller than the critical field to

induce the Fréedericksz transition. In fact in this case

the nematic sample behaves as an isotropic medium in

terms of what determines the dielectric, diffusion and

ionic mobility physical properties. However, as will be

shown, our analysis gives the correct order of

magnitude of the relaxation time even in the case in

which the nematic sample is distorted, i.e. the nematic

orientation is not uniform across the sample.

This problem is a rather important one in liquid

crystal displays. The influence of ions on the optical

properties of a nematic liquid crystal sample has been

the subject of intensive research work. In earlier first

papers the analysis was mainly on the importance of

the ionic renormalization of the anchoring energy and

flexoelectric coefficients by limiting the considerations

to the static situation [2–13]. More recently, works

devoted to the analysis of the optical response of a

nematic sample submitted to a periodic square-wave

signal have been published [14–16]. The studies of

the influence of ions on the dynamical properties of

nematic samples have been presented by several groups,

mainly for practical applications [17–26]. In the

relevant theoretical analysis, the characteristic times

are the diffusion time and the drift time [27].

In this scenario our paper represents the first attempt

to evaluate the relaxation time of the ionic redistribu-

tion in a nematic sample submitted to an external

electric field, in an analytical way.

Our paper is organized as follows. In § 2 the

fundamental equations of the problem are given, and

the simplifying hypotheses presented. The characteristic

relaxation time for the redistribution of the impurities

in the sample in the presence of the drift-diffusion

phenomenon is evaluated in § 3. The time evolution of

the density of ions is analytically deduced in § 4. In the*Author for correspondence; e-mail: lre@dfi.uem.br
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same section we also show the results obtained

numerically relevant to the time evolution of the

distribution of ions across the sample. The applicability

of the result of our model to nematic liquid crystal

samples is discussed in § 5. The main results of our

paper and conclusions are discussed in § 6. Finally, in

the Appendix a discussion on the role of adsorption

phenomenon on the drift-diffusion problem is reported.

2. Setting the problem

The sample is considered in the form of a slab of

thickness d limited by two flat surfaces, placed at

z~¡d/2, which are not adsorbing (see the Appendix).

The problem is assumed as being one-dimensional with

all the quantities depending only on the z-coordinate,

which is normal to the bounding plates. Let r(z, t) be

the density of impurities in the isotropic dielectric

liquid. In practical cases, r(z, t) can represent the

density of neutral particles dissolved in the liquid, or

the density of intrinsic ions connected with the

molecular dissociation or with the impurities present

in the liquid itself. Consider that on r acts an external

force F~2+U(z), where U(z) is the potential of F. In

this case F is responsible for a net current that, in the

limit of small |F|, is given by jF~mrF, where m is the

mobility and jF is the drift-current due to F. The total

current is then j~jDzjF~2D+rzmrF, where jD is the

diffusion current. The continuity equation in this case

reads

Lr

Lt
~+: D+rzmr+Uð Þ ð1Þ

which, in the one-dimensional case, is reduced to

Lr

Lt
~

L
Lz

D
Lr

Lz
zmr

dU

dz

� �
ð2Þ

where m/D~1/kBT is the Einstein–Smoluchowski rela-

tion [27]. In the following, we limit our investigation to

the case in which only one kind of impurity is present

in the liquid. However, our analysis can be easily

generalized to the case in which there are several kinds

of impurity present at the same time in the liquid under

investigation. In this situation for each type of impurity

we have to solve a problem similar to the one presented

in the following, and the effective relaxation time will

be determined by the group of impurities having the

higher mobility.

We limit our investigation to the ideal case in which

the external field can be assumed homogeneous:

dU/dz~h~constant. If the particles are neutral the

homogeneous external field can be identified with the

one due to gravity. If the particles are electrically

charged, the external field is due to an external power

supply. However, since h is assumed constant, the

density of ions has to be so small that the actual electric

field across the sample coincides with the external one.

In this framework equation (2) has to be solved by

imposing the conditionsðd=2

{d=2

r z, tð Þ dz~r0 d ð3Þ

where r0~r(z, t~0) is the initial homogeneous density

across the sample, and

j +d=2, tð Þ~0, Vt: ð4Þ
Equation (3) is the conservation of the number of par-

ticles per unit area in the cell. By putting r(z, t)~

req(z)zdr(z, t), where r(z, 0)~r0, req(z)~limtp‘r(z, t),

and hence limtp‘dr(z, t)~0 one obtains

req zð Þ~req 0ð Þ exp {2V zð Þ ð5Þ
where V~mh/(2D). The integration constant req is

obtained by imposing equation (3). One gets

req 0ð Þ~r0

V d

sinh V dð Þ : ð6Þ

From equation (6) it follows that for V~0, i.e. h~0,

req(0)~r0, and, hence, req(z)~r0. In this case, dr(z, t)~

0, for all 2d/2ƒzƒd/2 and 0ƒtv‘. In other words,

in the absence of adsorption phenomena at the limiting

surfaces, without the external field, the diffusion

phenomenon is, obviously, absent.

3. Relaxation time

The function dr(z, t) is solution of the linear partial

differential equation

L drð Þ
Lt

~D
L2 drð Þ

Lz2
zmh

L drð Þ
Lz

: ð7Þ

A solution to equation (7) is sought in the form

dr z, tð Þ~exp {b2t
� �

wb zð Þ ð8Þ
where b|0. By substituting equation (8) into (7) one

concludes that wb(z) is a solution of the ordinary

differential equation with constant coefficients

d2wb zð Þ
dz2

z2V
dwb zð Þ

dz
z

b2

D
wb zð Þ~0: ð9Þ

The characteristic exponents relevant to wb(z) are then

mb~2V¡ivb, where

vb~
b2

D
{V2

 !1
2

: ð10Þ

It follows that

wb zð Þ~exp {V zð Þ ab cos vbz
� �

zbb sin vbz
� �� �

ð11Þ
and, making use of equation (8), one has for dr(z, t) the
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expression

dr z, tð Þ~exp {b2t{V z
� �

ab cos vbz
� �

zbb sin vbz
� �� �

ð12Þ
whose functional dependence on t and z is typical of a

drift in the presence of diffusion. The total current

density is, in the present case, given by

j~{D
Lr

Lz
{mhr: ð13Þ

By taking into account that r(z, t)~req(z)zdr(z, t),

where req(z) is given by equation (5), one obtains

j~{D
L drð Þ

Lz
{mh drð Þ ð14Þ

that, for equation (12), can be rewritten as

j~{D exp {b2t{V z
� �

|

vb {ab sin vbz
� �

zbb cos vbz
� �� ��

zV ab cos vbz
� �

zbb sin vbz
� �� ��

:

ð15Þ

The boundary conditions j(¡d/2, t)~0 give the

homogeneous system

ab V cos Xb

�
{vb sin Xb

�
zbb V sin Xbzvb cos Xb

� �
~0

ab V cos Xb

�
zvb sin Xb

�
{bb V sin Xb{vb cos Xb

� �
~0

ð16Þ

where Xb~vbd/2. A non-trivial solution for ab and bb

is possible when the determinant of the coefficients of

the system (16) vanishes. This condition gives

V2zv2
b

h i
sin 2Xb

� �
~0, from which it follows that

Xn~vnd/2~np/2, where n~1, 2, .... Hence vn~np/d

and b2
n~D V2zn2p2

	
d2

� �
. The characteristic times

tn~1
	

b2
n are then given by

tn~
1

b2
n

~
1

1=thzn2=tD
ð17Þ

where th~1/(V2 D) is an intrinsic time connected with

the presence of the external field, and tD~d2/(p2 D) is

the diffusion time in the present case. The longest

characteristic time, for n~1, is then

t1~
1

1=thz1=tD
~

tD th

thztD
: ð18Þ

For tD%th, i.e. p/d&V, from equation (18), it follows

that t1ytD. In the opposite case where p/d%V one

finds t1yth.

If the diffusing particles are ions contained in an

isotropic liquid, and the drift is due to an external

electric field, by taking into account that h~qE, where

q is the electric charge of the ion, and m/D~1/kBT, the

relation t1yth reads

t1*tE~4
d2

m q V0

� �
kBT

qV0
ð19Þ

where V0 is the applied voltage. Equation (19) holds in

the hypothesis that the concentration of ions is so low

that the effective electric field in the sample practically

coincides with the external field. This characteristic time

is usually determined in elementary text-books as td~

d/vd~d/(m q E)~d2/(m q V0). From the expression of td

we derive, it depends on the temperature by means of

the ions mobility m. Consequently, the relative variation

of td occurring for a variation of the temperature T of

dT is

dtd

td
~

1

m

dm

dT
dT : ð20Þ

The relationship reported above for t1 shows that

t1~atd, where a~4kBT/(qV0) represents the impor-

tance of the thermal agitation energy with respect to the

potential energy responsible for the drift. It follows that

when T changes by dT, the relative variation of the

relaxation time is

dt1

t1
~

1

m

dm

dT
z

1

T


 �
dT : ð21Þ

To evaluate dm/dT we assume for the temperature

dependence of the diffusion coefficient of the ions in the

nematic material the one predicted by the Stokes–

Einstein law [28], D~kBT/(6pgR0), where g(T) is the

viscosity of the ion in the nematic liquid, and R0 an

average dimension of the ion. By taking into account

the Einstein–Smoluchowski relation m/D~1(kBT), we

get for the ion mobility the expression m(T)~

1/[6pg(T)R0], from which we obtain

1

m

dm

dT
~{

1

g

dg

dT
: ð22Þ

If we identify g(T) with the viscosity of the nematic

liquid crystal, (1/g)(dg/dT)y1022 [29]. In this case dt1/

t1 differs from dtd/td for the term dT/T, which is not

negligible with respect to (1/g)(dg/dT).

Note that t1, given by equation (19), represents the

time necessary for the system to reach equilibrium,

where the drift current is balanced by the diffusion

current. By contrast, td represents the time required for

an ion to travel across the entire sample. Usually t1vtd

because not all the ions have to move to reach the

equilibrium.
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4. Time evolution of the density of ions

Since equation (7) is linear, the general solution for

the problem can be written in the form

dr z, tð Þ~
X

n

exp {b2
n t

� �
wn zð Þ ð23Þ

where

wn zð Þ~exp {Vzð Þ an cos vnzð Þzbn sin vnzð Þ½ �: ð24Þ
The quantities

pn~
an

bn

~
vn cos XnzV sin Xn

vn sin Xn{V cos Xn

ð25Þ

when the eigenvalues have been determined, are known

quantities. Consequently, it is possible to rewrite

equation (23) in the form

dr z, tð Þ~exp {Vzð Þ
X

n

bnexp {b2t
� �

yn zð Þ ð26Þ

where

yn zð Þ~sin vnzð Þzpn cos vnzð Þ: ð27Þ

From equation (27) it follows that

SynjymT~

ðd=2

{d=2

yn zð Þym zð Þ dz~0 ð28Þ

for n|m, and

Sexp {Vzð ÞjymT~

ðd=2

{d=2

exp {Vzð Þyn zð Þ dz~0 ð29Þ

Notice thatðd=2

{d=2

dr z, tð Þdz~

X
n

bnexp {b2t
� � ðd=2

{d=2

exp {Vzð Þyn zð Þ dz~0

ð30Þ

for equation (29). Consequently, equation (3) is verified

for all t, as required.

It is now possible to determine the coefficients

bn appearing in equation (26). From the expression

r(z, t)~req(z)zdr(z, t) one has, in the limit t~0,

dr z, 0ð Þ~r0{req zð Þ: ð31Þ
By taking into account equation (26), one can rewrite

(31) in the form X
n

bnyn zð Þ~f zð Þ ð32Þ

where, for equation (6),

f zð Þ~exp Vzð Þdr z, 0ð Þ

~r0 exp Vzð Þ{ V d

sinh V dð Þ exp {Vzð Þ

 �

:
ð33Þ

From equation (32), for (28), one obtains

bm~
1

Nm

ðd=2

{d=2

f zð Þym zð Þ dz ð34Þ

where Nm~nym|ymm is the square of the modulus of

the eigenfunction ym.

In the figure we show the time evolution of r(z, t)~

reqzdr(z, t) for three typical values of the external

field h, such that t1ytD, t1ytDth/(tDzth), and t1yth.

As evident from the figure (c), in the limit of large

external field, that in practical terms means V0&p(kBT/

q)<0.075 V, the equilibrium distribution is reached

after a time teq<0.4tD.

5. Drift-diffusion phenomenon in nematic liquid

crystals

The analysis described is, strictly speaking, valid only

for isotropic liquids. The application of our results to

nematic liquid crystals requires some supplementary

hypothesis. As is well known, nematic liquid crystal are

anisotropic liquids, whose optical axis coincides with

the average molecular orientation, called the nematic

director and denoted by n. The physical parameters of

nematic materials are described by symmetric tensors of

second order [30]. In particular, the dielectric constant,

diffusion coefficient, and the ion mobility of the

nematic medium, have different values along and

perpendicular to the director. The tensors representing

these are of the form

eij~e\dijzeaninj,

Dij~D\dijzDaninj,

mij~m\dijzmaninj,

ð35Þ

where ea~e||2e\, and || and \ refer to n. Similar

considerations hold for the tensors of diffusion and ion

mobility. This circumstance implies that the effective

dielectric constant, diffusion and ion mobility depend

on the nematic orientation, described by n.

Since we are considering a nematic sample subjected

to an external field, other limitations on the values of

the field have to be imposed. The nematic materials

present an electric polarization connected with the

nematic distortion that we have not considered in our

analysis. Furthermore, if the electric field is strong

enough it can induce a distortion. It follows that our

results are valid also for nematic liquid crystals only if

they are uniformly oriented. This implies that the

external field has to be smaller than the critical field for

the Fréedericksz transition. In this case our results can

be directly applied to analyse the typical relaxation time

in a drift-diffusion phenomenon. However, since

the values of the parameters along and normal to the

director are of the same order of magnitude [17], the
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analysis presented already gives the correct order of

magnitude of the relaxation time for the ions in a

nematic liquid crystals even in the case in which it is

distorted.

It follows that we can apply our result to typical

experimental situations concerning nematic liquid

crystals. By assuming dy8 mm, Dy10211 m2 s21 [24]

we have tD~d2/(p2D)y0.65 s, and hence teq<0.26 s.

This means that the ions follow the external field

variations, if the external field is changing with a

characteristic time greater than 0.3 s. However, in the

case in which the ions are macroparticles coming from

the deterioration of the aligning layers [24], the time

scale can be completely different. In this case for

Dy10212 m2 s21, which corresponds to a radius of the

ion of the order of 20 nm [24], we have tDy6.5 s

and hence teqy2.6 s. In this situation, if the external

field is changing with a period of the order of 1 s,

the macroparticles coming from the surfaces do

not contribute to the phenomenon. Of course, the

ions dissolved in the liquid crystal, for which

Dy10211 m2 s21, by contrast, do contribute. This

conclusion may be of importance in the experimental

determination of physical parameters of nematic liquid

crystals when external electric fields are applied [14–16].

6. Conclusions

We have determined, in the limit of small ionic

density, the intrinsic time connected with the presence

of the external field on the ion redistribution. It has

been found to be proportional to the drift-time and,

depends on the temperature by means of the ratio kBT/

qV0, representing the importance of the thermal

agitation energy with respect to the electrostatic

potential energy. We have also solved, with in this

framework, the full continuity equation, obtained the

eigenvalues of the problem, and found the time

evolution of the particle density across the sample.

Figure. Time evolution of r(z, t) for three typical values of the external voltage V0~ap(kBT/q) for (a) a~1/5, (b) a~1 and (c) a~5.
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Finally, the possible application of our analysis to the

drift-diffusion of ions in nematic sample in the shape of

a slab has been discussed. In this case we have shown

that, although the mathematical description of the the

phenomenon under consideration is more complicated,

our model gives the correct order of magnitude of the

relaxation time.

This work was partially supported by Brazilian

Agencies CAPES and Fundação Araucária.

Appendix

In our analysis we have solved the partial differential

equation

Lr

Lt
~D

L2r

Lz2
zmh

Lr

Lz
ðA1Þ

with the boundary condition

{D
Lr

Lz
{mhr~0 ðA2Þ

at z~¡d/2, by taking into account the conservation of

the number of particles expressed by the relationðd=2

{d=2

r z, tð Þ dz~r0d: ðA3Þ

As stated in the text, equations (A1), (A2) and (A3)

hold in the hypothesis that the adsorption from the

surface can be neglected. The aim of this appendix is to

discuss when this approximation works well.

In a real problem, when adsorption from the surface

is present, the drift-diffusion equation has to be solved

with the kinetic equation at the adsorbing surface. This

equation describes the importance of the adsorption

with respect to the desorption phenomenon. A form of

this equation proposed by Maximus et al. [20] is

ds

dt
~kr {d=2, tð Þ{ 1

t
s tð Þ ðA4Þ

where s(t) represents the surface density of adsorbed

particles. The first contribution to the r.h.s of

equation (A4), whose phenomenological coefficient is

k, is connected with the trapping of the particles from

the bulk by the surface, whereas the second term is

connected with the desorption of the particles already

at the surface. The relevant phenomenological para-

meter is the desorption time t. In this case equa-

tion (A1) has to be solved with the boundary condition

{D
Lr

Lz
{mhr~

ds

dt
ðA5Þ

at z~¡d/2. The new relationship taking into account

the conservation of the number of particles is now

2s tð Þz
ðd=2

{d=2

r z, tð Þ dz~r0d: ðA6Þ

Let us introduce the reduced coordinates zr~z/d,

tr~t/tD, and the characteristic times tD~d2/D, tF~d/

(mh), tk~d/(2k), connected to the diffusion, to the drift

under the external field, and to the adsorption,

respectively. Finally we define the reduced densities

rr~r/r0, and sr~2s/(r0d). In terms of the reduced quan-

tities equations (A1), (A4) and (A6) read, respectively,

Lrr

Ltr
~

L2rr

Lz2
r

z
tD

tF

Lrr

Lzr
ðA7Þ

dsr

dtr
~

tD

tk
rr {1=2, trð Þ{ tD

t
sr trð Þ ðA8Þ

and

sr trð Þz
ð1=2

{1=2

rr zr, trð Þ dzr~1: ðA9Þ

From equation (A9) it follows that when tk&tD, and

t&tD the adsorbtion–desorption phenomenon from the

limiting surfaces is negligible. Our analysis works in this

case.

However, since we are mainly interested in the

relaxation time of the ions dissolved in the liquid in the

presence of an external electric field, our results are

actually valid in general. The reason is the following.

Usually, when an electric field is applied to a nematic

liquid crystal the electrodes are covered with a thin

layer of an insulating material, in order to avoid charge

injection. This surface layer, in some cases, can also

be used to orient the nematic liquid crystal. In this

experimental situation, when the external field is

switched on the ions present in the liquid crystal

move close to the electrodes and screen the applied

field. In any case, due to the presence of the insulating

material, the current density j(¡d/2, t)~0. Since, in

our analysis the eigenvalues are connected with the

boundary conditions j(¡d/2, t)~0, the discussion

presented in the paper relevant to the characteristic

relaxation time remains unchanged.
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